Phone: +86-571-85152711
Email: 
Sales@NewOpto.com
 
ABOUT US
DETECTORS (Photodiodes, Si, Ge, InGaAs)

1 PRINCIPLE OF OPERATION

A photodiode is a type of photodetector capable of converting light into either current or voltage, depending upon the mode of operation.

Photodiodes are similar to regular semiconductor diodes except that they may be either exposed (to detect vacuum UV or X-rays) or packaged with a window or optical fiber connection to allow light to reach the sensitive part of the device. Many diodes designed for use specifically as a photodiode will also use a PIN junction rather than the typical p-n junction to increase the speed of response. A photodiode is designed to operate in reverse bias.

A photodiode
is a p-n junction or PIN structure. When a photon of sufficient energy strikes the diode, it excites an electron, thereby creating a free electron (and a positively charged electron hole). This mechanism is also known as the photoelectric effect. If the absorption occurs in the junction's depletion region, or one diffusion length away from it, these carriers are swept from the junction by the built-in field of the depletion region. Thus holes move toward the anode, and electrons toward the cathode, and a photocurrent is produced. This photocurrent is the sum of both the dark current (without light) and the light current, so the dark current must be minimised to enhance the sensitivity of the device.

Photovoltaic mode

When used in zero bias (with the cathode positive) or photovoltaic mode, the flow of photocurrent out of the device is restricted and a voltage builds up. This mode exploits the photovoltaic effect, which is the basis for solar cells - a traditional solar cell is just a large area photodiode.

Photoconductive mode

In this mode the diode is often reverse biased (with the cathode positive), dramatically reducing the response time at the expense of increased noise. This increases the width of the depletion layer, which decreases the junction's capacitance resulting in faster response times. The reverse bias induces only a small amount of current (known as saturation or back current) along its direction while the photocurrent remains virtually the same. For a given spectral distribution, the photocurrent is linearly proportional to the illuminance (and to the irradiance). Although this mode is faster, the photoconductive mode tends to exhibit more electronic noise. The leakage current of a good PIN diode is so low (<1 nA) that the Johnson-Nyquist noise of the load resistance in a typical circuit often dominates.

Other modes of operation

Avalanche photodiodes have a similar structure to regular photodiodes, but they are operated with much higher reverse bias. This allows each photo-generated carrier to be multiplied by avalanche breakdown, resulting in internal gain within the photodiode, which increases the effective responsivity of the device.

Phototransistors also consist of a photodiode with internal gain. A phototransistor is in essence nothing more than a bipolar transistor that is encased in a transparent case so that light can reach the base-collector junction. The electrons that are generated by photons in the base-collector junction are injected into the base, and this photodiode current is amplified by the transistor's current gain β (or hfe). Note that while phototransistors have a higher responsivity for light they are not able to detect low levels of light any better than photodiodes. Phototransistors also have significantly longer response times.

2 MATERIALS

The material used to make a photodiode is critical to defining its properties, because only photons with sufficient energy to excite electrons across the material's bandgap will produce significant photocurrents. Materials commonly used to produce photodiodes include:

Silicon, 190-1100nm Wavelength range
Germanium, 400-1700nm Wavelength range 
Indium Gallium Arsenide (InGaAs), 800-2600nm Wavelength range
Lead Sulfide, 1000-3500nm Wavelength range

Because of their greater bandgap, silicon-based photodiodes generate less noise than germanium-based photodiodes, but germanium photodiodes must be used for wavelengths longer than approximately 1µm.

3 FEATURES

Responsivity

The ratio of generated photocurrent to incident light power, typically expressed in A/W when used in photoconductive mode. The responsivity may also be expressed as a Quantum efficiency, or the ratio of the number of photogenerated carriers to incident photons and thus a unitless quantity.

Dark current

The current through the photodiode in the absence of light, when it is operated in photoconductive mode. The dark current includes photocurrent generated by background radiation and the saturation current of the semiconductor junction. Dark current must be accounted for by calibration if a photodiode is used to make an accurate optical power measurement, and it is also a source of noise when a photodiode is used in an optical communication system.

Noise-equivalent power ( NEP )
The minimum input optical power to generate photocurrent, equal to the rms noise current in a 1 hertz bandwidth. The related characteristic detectivity (D) is the inverse of NEP, 1/NEP; and the specific detectivity (D*) is the detectivity normalized to the area (A) of the photodetector. The NEP is roughly the minimum detectable input power of a photodiode. When a photodiode is used in an optical communication system, these parameters contribute to the sensitivity of the optical receiver, which is the minimum input power required for the receiver to achieve a specified bit error ratio.

4 APPLICATIONS

P-N photodiodes are used in similar applications to other photodetectors, such as photoconductors, charge-coupled devices, and photomultiplier tubes.
Photodiodes are used in consumer electronics devices such as compact disc players, smoke detectors, and the receivers for remote controls in VCRs and televisions.
In other consumer items such as camera light meters, clock radios (the ones that dim the display when it's dark) and street lights, photoconductors are often used rather than photodiodes, although in principle either could be used.

Photodiodes are often used for accurate measurement of light intensity in science and industry. They generally have a better, more linear response than photoconductors. They are also widely used in various medical applications, such as detectors for computed tomography (coupled with scintillators) or instruments to analyze samples (immunoassay). They are also used in pulse oximeters.

PIN diodes are much faster and more sensitive than ordinary p-n junction diodes, and hence are often used for optical communications and in lighting regulation.
P-N photodiodes are not used to measure extremely low light intensities. Instead, if high sensitivity is needed, avalanche photodiodes, intensified charge-coupled devices or photomultiplier tubes are used for applications such as astronomy, spectroscopy, night vision equipment and laser rangefinding.
 
Photodiode array, such as one-dimensional array of hundreds or thousands of photodiodes can be used as a position sensor, for example as part of an angle sensor. One advantage of photodiode arrays (PDAs) is that they allow for high speed parallel read out since the driving electronics may not be built in like a traditional CMOS or CCD sensor.

Supported by Newopto.com
Phone: +86-571-85152711 Fax: +86-571-85152722 Email: Sales@NewOpto.com
浙ICP备11028292号  Copyright © 2011-2017 NewOpto Corporation